
LINEAR AND BILINEAR TRANSFORMATIONS
FOR MODERATELY EXPONENTIAL ALGORITHMS

(LECTURE NOTES FOR AGAPE 09)

PETTERI KASKI

1. Introduction

Many basic tasks in algebra can be reduced to the problem of evaluating a set
of linear or bilinear forms over a ring R (for example, over the integers).

In the linear case, the task is to evaluate

(1) yi =
n∑
j=1

aijxj for 1 ≤ i ≤ m,

where the aij are coefficients in R, and the xj are elements of R given as input.
In the bilinear case, the task is to evaluate

(2) zi =
n∑
j=1

s∑
k=1

bijkxjyk for 1 ≤ i ≤ m,

where the bijk are coefficients in R, and the xj and yk are elements of R given as
input.

Here the coefficients aij and bijk are understood to be static (that is, part of
the problem definition) and not part of the formal input. Put otherwise, (1) is
essentially the task of multiplying a given vector with an implicit m × n matrix,
and (2) asks us to evaluate a bilinear product of given two vectors. For example,
taking the average 1

n

∑n
j=1 xj reduces to (1) with m = 1, and the inner product∑n

j=1 xjyj reduces (2) with m = 1 and n = s.

Exercise 1. Express the task of multiplying two complex numbers, x1 + x2= and
y1 + y2=, as the task of evaluating a set of two bilinear forms.

Exercise 2. Express the task of multiplying two polynomials of degrees p and q,
respectively, as the task of evaluating a set of p+ q + 1 bilinear forms.

Exercise 3. Express the task of multiplying two matrices of sizes p× q and q × r,
respectively, as the task of evaluating a set of p · r bilinear forms.

In this lecture we study algorithms based on “faster-than-obvious” evaluation
strategies for specific linear and bilinear transformations. Our measure of efficiency
in this setting is the number of basic arithmetic operations in the ring R.

Exercise 4. The obvious way to multiply two complex numbers requires four real
multiplications:

(x1 + x2=)(y1 + y2=) = x1y1 − x2y2 + (x1y2 + y1x2)=.
Show that three real multiplications suffice.

1

2 PETTERI KASKI

In many cases it is possible to view an evaluation strategy as an R-arithmetic
circuit that transforms a given input into the desired output via a circuit of (i)
arithmetic gates (addition, negation, multiplication) and (ii) constant gates taking
values in R. We assume that all arithmetic gates have a fan-in of at most two.

Example 5. A real arithmetic circuit for multiplying two complex numbers with
three multiplications.

+

+

·

·

· +

+

x1

x2

y1

y2

+ z1

z2

−

−

Note that multiplication in an arbitrary ring R need not be commutative, in
which case one must explicitly indicate the left and right inputs to a multiplication
gate.

2. Two examples of fast evaluation

2.1. Yates’s algorithm. The n-dimensional binary hypercube (the n-cube) is the
graph whose vertices are the binary strings s = (s1, s2, . . . , sn) ∈ {0, 1}n, and any
two vertices are joined by an edge if and only if they differ in exactly one position.

Example 6. The n-cube for n = 4.

0001

1001

1000

1111

1010 1100

11101011 1101

0110

01000010

0000

0101

0111

0011

Consider the following task. Let k : {0, 1}2 → R and x : {0, 1}n → R be given
as input. We must output the function y : {0, 1}n → R, defined by

(3) y(t) def=
∑

s∈{0,1}n

(n∏
i=1

k(ti, si)
)
x(s) for t ∈ {0, 1}n.

Observe that (3) in fact asks us to evaluate a set of 2n linear forms, one for each
vertex t of the n-cube. Thus, we are looking at an instance y(t) =

∑
s a(t, s)x(s) of

(1), where the coefficients a(t, s) =
∏n
i=1 k(ti, si) are determined by the auxiliary

input k.
A direct evaluation of (3) takes O(4nn) ring operations.

3

To arrive at more efficient evaluation, one possibility is to view
∏n
i=1 k(ti, si) in

(3) as the “weight” of a “walk” from s to t in the n-cube, where each step si 7→ ti
contributes the weight k(ti, si). In particular, we can view y(t) as the weighted
sum of “messages” x(s) transmitted along walks to t. A direct evaluation of (3)
corresponds to considering each individual walk separately, but it turns out that
the walks can be processed in aggregate using dynamic programming.

Let us make more precise the notion of a “walk” in this context. Let s and t be
any two vertices of the n-cube. The walk from s to t is a sequence of n steps, where
step i = 1, 2, . . . , n consists of the rule si 7→ ti applied to position i.

Example 7. The walk from s = (0, 1, 1, 0) to t = (1, 1, 0, 0) is (0 7→ 1, 1 7→ 1, 1 7→
0, 0 7→ 0). The sequence of vertices visited by the walk appears below.

0 (0 7→ 1) 1 1 1 1
1 1 (1 7→ 1) 1 1 1
1 1 1 (1 7→ 0) 0 0
0 0 0 0 (0 7→ 0) 0

Observe that a walk uniquely determines the sequence of vertices it visits.

Exercise 8. Conclude that for any vertex u ∈ {0, 1}n there are exactly 2n walks
that are at u after exactly j steps, 0 ≤ j ≤ n.

The intuition in the following algorithm is that zj(u) contains an aggregate of
the walks that are at u after exactly j steps. In particular, these walks originate
from the vertices (s1, . . . , sj , uj+1, . . . , un) for s1, . . . , sj ∈ {0, 1}.

The algorithm proceeds in n rounds. First, for every s ∈ {0, 1}n, set

(4) z0(s) def= x(s).

In round j = 1, 2, . . . , n, for every u ∈ {0, 1}n, set

zj(u1, . . . , un) def=

k(uj , 0) · zj−1(u1, . . . , uj−1, 0, uj+1, . . . , un)

+ k(uj , 1) · zj−1(u1, . . . , uj−1, 1, uj+1, . . . , un).

(5)

Lemma 9. For all j = 0, 1, . . . , n and u ∈ {0, 1}n it holds that

(6) zj(u1, . . . , un) =
∑

s1,...,sj∈{0,1}

(j∏
i=1

k(ui, si)
)
x(s1, . . . , sj , uj+1, . . . , un) .

Proof. By induction on j. �

Exercise 10. Give a full proof for Lemma 9.

In particular, (3) and (6) imply that zn(t) = y(t) for all t ∈ {0, 1}n. Thus,
Yates’s algorithm given by (4) and (5) evaluates (3) in O(2nn) ring operations.

Observe that we may think of (4) and (5) as a specification of an arithmetic
circuit with inputs for x and outputs for y = zn.

(3)x y

4 PETTERI KASKI

Exercise 11. Draw Yates’s algorithm as an arithmetic circuit when n = 3 and
k(0, 0) = 1, k(1, 0) = 1, k(0, 1) = 0, k(1, 1) = 1.

Exercise 12. Let A and B be m×n and p×q matrices, respectively. The Kronecker
product A⊗B is the mp× nq matrix defined by

A⊗B def=

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 .
Express (3) as a matrix–vector product, where the matrix is obtained via Kronecker
products. Using this representation, design a recursive version of Yates’s algorithm.

Exercise 13. Extend Yates’s algorithm to evaluate sums of the form
y(t1, . . . , tn) =
m1−1∑
s1=0

m2−1∑
s2=0

· · ·
mn−1∑
sn=0

k1(t1, . . . , tn, s1)k2(t2, . . . , tn, s2) · · · kn(tn, sn)x(s1, . . . , sn)

where ti = 0, 1, . . . ,mi − 1 for i = 1, 2, . . . n.

Exercise 14. Consider the one-dimensional discrete Fourier transform for a se-
quence x(0), x(1), . . . , x(2n − 1) of length 2n:

y(t) =
2n−1∑
s=0

exp
(

2π=st
2n

)
x(s) for t = 0, 1, . . . , 2n − 1.

Reduce to the form in the previous exercise.

2.2. Strassen’s algorithm. How many multiplications does it take to multiply
two 2× 2 matrices? A direct evaluation takes 8 multiplications:

X =
[
a b
c d

]
, Y =

[
e f
g h

]
, XY =

[
ae+ bg af + bh
ce+ dg cf + dh

]
.

However, as was discovered by Strassen in 1968, 7 multiplications suffice:

XY =
[
q5 + q4 − q2 + q6 q1 + q2

q3 + q4 q1 + q5 − q3 − q7

]
,

where

q1 = a(f − h) , q5 = (a+ d)(e+ h) ,

q2 = (a+ b)h , q6 = (b− d)(g + h) ,

q3 = (c+ d)e , q7 = (a− c)(e+ f) ,

q4 = d(g − e) .

Exercise 15. Express Strassen’s formula as an arithmetic circuit with three levels
of gates (addition, multiplication, addition).

Now, suppose we want to multiply two n × n matrices, X and Y . Assuming n
is even (if not, insert a row and column of 0s to both matrices), we can partition
X and Y each into four dn/2e × dn/2e submatrices

X =
[
A B
C D

]
, Y =

[
E F
G H

]

5

whereby the product XY can be expressed in similarly partitioned form as

XY =
[
AE +BG AF +BH
CE +DG CF +DH

]
.

Déjà vu? Indeed, Strassen’s discovery tells us how to compute the matrix product
XY using only 7 multiplications of dn/2e×dn/2e matrices! By recursion, we obtain
that two n× n matrices can be multiplied in

(7) T (n) = 7T (dn/2e) +O(n2)

arithmetic operations, that is, T (n) = O(nlog2 7) = O(n2.81). Computing directly
from the definition takes Θ(n3) operations.

Can one do better than O(n2.81)? Put otherwise, for which exponents α do
there exist algorithms such that one can multiply n × n matrices in time O(nα)?
Obviously α ≥ 2. Let ω be the greatest lower bound for such exponents α. We say
that ω is the exponent of matrix multiplication. Currently the best upper bound is
ω ≤ 2.376 (see §5.3), but many conjecture that ω = 2.

3. Transformations on the subset lattice

Let U = {1, 2, . . . , n} and denote by 2U the set of all subsets of U . The basic set
operations (A∪B, A∩B, A\B, . . .) on 2U induce natural bilinear transformations
on functions f : 2U → R. We study two such transformations, the union product
and the disjoint union product.

3.1. The union product. Let f : 2U → R and g : 2U → R. Define the union
product f ∪ g : 2U → R by

(8) (f ∪ g)(S) def=
∑

A∪B=S

f(A)g(B) for S ⊆ U,

where the sum is understood to range over all pairs A,B ⊆ U such that A∪B = S.
Observe that (8) is an instance of (2).

Exercise 16. (f ∪ g) ∪ h = f ∪ (g ∪ h).

Exercise 17. (f1 ∪ f2 ∪ · · · ∪ fk)(S) =
∑
A1∪A2∪···∪Ak=S f1(A1)f2(A2) · · · fk(Ak).

Exercise 18. For a given S ⊆ U , how many pairs (A,B) are there such that
A ∪B = S? Given f and g as input, how many arithmetic operations does it take
to compute f ∪ g directly from the definition?

3.2. Moebius inversion. The principle of Moebius inversion states that any finite
partially ordered set (X,≤) has a pair of mutually inverse linear transformations,
the zeta transform and the Moebius transform, for manipulating functions f : X →
R. In particular, this applies to (2U ,⊆), and will reduce f ∪ g into a pointwise
product amenable for fast evaluation.

Lemma 19. A finite nonempty set has equally many subsets of even and odd size.

Proof. Let x ∈ U . Partition the subsets of U into pairs by associating S ⊆ U \ {x}
with S ∪ {x}. Exactly one set in each pair has even (odd) size. �

Exercise 20. Give an algebraic proof for Lemma 19. Hint: the Binomial Theorem
(x+ y)n =

∑n
i=0

(
n
i

)
xiyn−i.

6 PETTERI KASKI

Let f : 2U → R. Define the zeta transform fζ : 2U → R by

(9) (fζ)(T) def=
∑
S⊆T

f(S) for T ⊆ U.

Define the Moebius transform fµ : 2U → R by

(10) (fµ)(T) def=
∑
S⊆T

(−1)|S|+|T |f(S) for T ⊆ U.

Observe that both (9) and (10) are examples of (1). Also observe that if we are
working over an abstract ring R, then “1” in (10) refers to the multiplicative identity
element of R.

Exercise 21. Given f as input, how many arithmetic operations does it take to
compute fζ directly from the definition?

For a logical proposition P , we use Iverson’s bracket notation [P] as a shorthand
for 1 when P is true, and for 0 when P is false. This notation will be convenient
when simplifying nested sums, such as in the proof of the following lemma.

Lemma 22. The zeta- and Moebius transforms on (2U ,⊆) are mutual inverses.

Proof. We show that fζµ = f and leave fµζ = f as Exercise 23. Consider an
arbitrary S ⊆ U . We have

(fζµ)(S) =
∑
Q⊆S

(−1)|Q|+|S|(fζ)(Q) (definition)

=
∑
Q⊆S

(−1)|Q|+|S|
∑
P⊆Q

f(P) (definition)

=
∑
Q

[Q ⊆ S](−1)|Q|+|S|
∑
P

[P ⊆ Q]f(P) (to brackets)

=
∑
Q,P

[Q ⊆ S](−1)|Q|+|S|[P ⊆ Q]f(P) (expand)

= (−1)|S|
∑
P

f(P)
∑
Q

(−1)|Q|[P ⊆ Q][Q ⊆ S] (collect)

= (−1)|S|
∑
P

f(P)
∑
Q

(−1)|Q|[P ⊆ Q ⊆ S] (simplify brackets)

= (−1)|S|
∑
P

f(P)[P ⊆ S]
∑

X⊆S\P

(−1)|P |+|X| (X def= Q \ P)

= (−1)|S|
∑
P

f(P)(−1)|P |[P = S] (Lemma 19)

= f(S) . (simplify sum)

�

Exercise 23. Show that fµζ = f .

Exercise 24. What do the matrices associated with ζ and µ look like if we consider
the subsets indexing the rows and columns of the matrices in lexicographic order?
Construct the matrices for small values of n. By looking at the matrices, can you
devise a fast recursion for computing fζ and fµ given f as input?

7

Exercise 25. Generalize the zeta transform to functions f : X → R, where X is an
arbitrary finite set equipped with a partial order ≤. Prove that the zeta transform
on X is invertible. Derive an explicit form for the Moebius transform on your
favourite partially ordered set, say, the set of positive divisors of the integer n,
partially ordered by divisibility.

Define the pointwise product f · g : 2U → R by (f · g)(S) def= f(S)g(S) for S ⊆ U .

Lemma 26. (f ∪ g)ζ = (fζ) · (gζ).

Proof. For a T ⊆ U , we have

((f ∪ g)ζ)(T) =
∑
S⊆T

(f ∪ g)(S) (definition)

=
∑
S⊆T

∑
A∪B=S

f(A)g(B) (definition)

=
∑
S

[S ⊆ T]
∑
A,B

[A ∪B = S]f(A)g(B) (to brackets)

=
∑
S,A,B

[S ⊆ T][A ∪B = S]f(A)g(B) (expand)

=
∑
A,B

f(A)g(B)
∑
S

[S ⊆ T][A ∪B = S] (collect)

=
∑
A,B

f(A)g(B)
∑
S

[A ∪B = S ⊆ T] (simplify brackets)

=
∑
A,B

f(A)g(B)[A ∪B ⊆ T] (simplify sum)

=
∑
A,B

f(A)g(B)[A ⊆ T][B ⊆ T] (simplify brackets)

=
∑
A

[A ⊆ T]f(A)
∑
B

[B ⊆ T]g(B) (collect)

=
∑
A⊆T

f(A)
∑
B⊆T

g(B) (to sums)

= (fζ)(T)(gζ)(T) . (definition)

�

By Moebius inversion, we can recover the union product by taking the Moebius
transform on both sides:

(11) f ∪ g = ((fζ) · (gζ))µ .

Again we may think of (11) as a circuit specification:

f ∪ gµ

f ζ

g ζ

·

8 PETTERI KASKI

Exercise 27. (f1 ∪ f2 ∪ · · · ∪ fk)ζ = (f1ζ) · (f2ζ) · . . . · (fkζ).

Exercise 28. How many operations does it take to directly evaluate the right-hand
side of f ∪ f ∪ · · · ∪ f︸ ︷︷ ︸

k terms

= (fζ)·kµ ? What if we only want (f ∪ f ∪ · · · ∪ f)(U)?

3.3. Disjoint union product (subset convolution). Let us consider a variant
of the union product where we require the unions A ∪ B = S to be disjoint, that
is, that A ∩B = ∅ must also hold.

For brevity, let us write A
·
∪ B = S as a shorthand for A∪B = S and A∩B = ∅.

More generally, let us write A1

·
∪ A2

·
∪ · · ·

·
∪ Ak = S for A1 ∪ A2 ∪ · · · ∪ Ak = S

and Ai ∩Aj = ∅ for all 1 ≤ i < j ≤ k.

Define the disjoint union product f
·
∪ g : 2U → R by

(12) (f
·
∪ g)(S) def=

∑
A
·
∪B=S

f(A)g(B) for S ⊆ U.

The union product is also called the subset convolution because of the “convolution-
like” equivalent form

(f
·
∪ g)(S) =

∑
T⊆S

f(T)g(S \ T) .

Again observe that (12) is an instance of (2).

Exercise 29. (f
·
∪ g)

·
∪ h = f

·
∪ (g

·
∪ h).

Exercise 30. (f1
·
∪ f2

·
∪ · · ·

·
∪ fk)(S) =

∑
A1
·
∪A2

·
∪···

·
∪Ak=S

f1(A1)f2(A2) · · · fk(Ak).

Exercise 31. Given f and g as input, how many arithmetic operations does it take
to compute f

·
∪ g directly using the convolution form?

Let us now reduce f
·
∪ g via “polynomial extension” to the union product. The

following fact will provide the crux of the argument.

Lemma 32. For A,B, S ⊆ U we have A ∪ B = S and A ∩ B = ∅ if and only if
A ∪B = S and |A|+ |B| = |S|.

Let w be a polynomial indeterminate, and denote by R〈w〉 the associated univari-
ate polynomial ring with coefficients in R. For a polynomial p =

∑
i aiw

i ∈ R〈w〉,
denote by {wj}p the coefficient of the monomial wj in p, that is, {wj}p = aj .

Exercise 33. Can we use an R-arithmetic circuit to simulate an R〈w〉-arithmetic
circuit? What if we introduce an R〈w〉-arithmetic gate {wj} that takes as input
a polynomial and outputs (as a polynomial of degree zero) the coefficient of the
monomial wj for a constant j?

Exercise 34. Can we replace computations with explicit polynomials by compu-
tations with evaluations of such polynomials in sufficiently many distinct points
w = w0, w1, . . . , wd to enable recovery of the polynomial coefficients (as necessary)
via interpolation? Can we interpolate in an arbitrary ring?

Let us now proceed with the reduction. Suppose we are given f : 2U → R
and g : 2U → R as input. Define f 〈w〉 : 2U → R〈w〉 and g〈w〉 : 2U → R〈w〉 by
f 〈w〉(S) = f(S)w|S| and g〈w〉(S) = g(S)w|S| for S ⊆ U .

9

Note in the following equality that the union product on the right-hand side is
evaluated in R〈w〉.

Lemma 35. (f
·
∪ g)(S) = {w|S|}(f 〈w〉 ∪ g〈w〉)(S).

Proof.

{w|S|}(f 〈w〉 ∪ g〈w〉)(S) = {w|S|}
∑

A∪B=S

f 〈w〉(A)g〈w〉(B) (definition)

= {w|S|}
∑

A∪B=S

f(A)w|A|g(B)w|B| (definition)

=
∑

A∪B=S

{w|S|}f(A)w|A|g(B)w|B| (linearity)

=
∑

A∪B=S

{w|S|}f(A)g(B)w|A|+|B| (collect)

=
∑
A,B

[A ∪B = S]{w|S|}f(A)g(B)w|A|+|B| (to brackets)

=
∑
A,B

[A ∪B = S][|A|+ |B| = |S|]f(A)g(B) (definition)

=
∑
A,B

[A ∪B = S][A ∩B = ∅]f(A)g(B) (Lemma 32)

=
∑

A∪B=S
A∩B=∅

f(A)g(B) (to sums)

=
∑

A
·
∪B=S

f(A)g(B) (definition)

= (f
·
∪ g)(S) . (definition)

�

Again we may view the result as a circuit specification:

{w|S|}

ζ

ζ

〈w〉

〈w〉g

f

µ· f
·
∪ g

Exercise 36. (f1
·
∪ f2

·
∪ · · ·

·
∪ fk)(S) = {w|S|}(f 〈w〉1 ∪ f 〈w〉2 ∪ · · · ∪ f 〈w〉k)(S).

Exercise 37. Consider the disjoint union product. Suppose we relax A∪B = S to
A,B ⊆ S, but still require that A ∩ B = ∅. Study the resulting “disjoint packing”
product. Can you reduce the disjoint packing product to the disjoint union product?

4. Two examples of algebraization

We consider two examples of algebraization and associated time–space tradeoffs
enabled by fast evaluation.

10 PETTERI KASKI

4.1. Graph coloring. Let G be an undirected loopless graph with vertex set V .
A set I ⊆ V is independent in G if no two vertices in I are joined by an edge of
G. We say that G is k-colorable if there exist independent sets I1, I2, . . . , Ik such
that I1

·
∪ I2

·
∪ · · ·

·
∪ Ik = V . Such an ordered tuple (I1, I2, . . . , Ik) is a (proper)

k-coloring of G. Indeed, the intuition is that the vertices in Ii have “color” i; a
coloring is proper if and only if the ends of every edge have distinct colors.

The k-coloring problem asks, given a graph G and a positive integer k as input,
whether G has a proper k-coloring.

4.2. Algebraizing graph coloring. Denote by Z the ring of integers. Let f :
2V → Z be the indicator function for independent sets in G, that is, f(I) =
[I is independent in G] for I ⊆ V . Note that f is implicitly defined by the input
G.

The number of distinct proper k-colorings of G is, by an iterated application of
the disjoint union product,

(13)
∑

I1
·
∪I2

·
∪···

·
∪Ik=V

f(I1)f(I2) · · · f(Ik) = {w|V |}((f 〈w〉ζ)·kµ)(V) .

Assuming that |V | = n and k = O(n), a direct evaluation of the right-hand side
of (13) requires O∗(3n) time and O∗(1) space, where O∗(·) hides a multiplicative
factor polynomial in n.

4.3. A time-space tradeoff via fast Moebius inversion. The evaluation of
product forms such as (13) can be expedited if sufficient space is available.

Lemma 38. The zeta transform on the subset lattice can be computed in O(2nn)
ring operations given space for O(2n) ring elements.

Proof. Recall that we assume U = {1, 2, . . . , n}. Identify S ⊆ U with the binary
string s = (s1, s2, . . . , sn) ∈ {0, 1}n by i ∈ S if and only if si = 1 for 1 ≤ i ≤ n.
In particular, we have [S ⊆ T] =

∏n
i=1[si ≤ ti]. Thus, Yates’s algorithm with

x(s) ← f(S) and k(b, a) ← [a ≤ b] in (3) uses O(2nn) ring operations to compute
(fζ)(T) = y(t) for all T ⊆ U . Storage for O(2n) ring elements suffices because zj
depends only on zj−1 in (5). �

Exercise 39. Show that the Moebius transform admits a similar tradeoff.

Theorem 40. The union product can be computed in O(2nn) ring operations given
space for O(2n) ring elements.

Proof. We take advantage of (11) and Lemma 38. Given f and g as input, compute
fζ and gζ, take the pointwise product (fζ) · (gζ), and finally compute the Moebius
transform ((fζ) · (gζ))µ to obtain f ∪ g. Each of the three steps takes O(2nn)
operations. �

Exercise 41. Show that the disjoint union product can be computed in O(2nn2)
ring operations given space for O(2n) ring elements.

Thus, given O∗(2n) space, we can solve graph coloring in O∗(2n) time by evalu-
ating the right-hand side of (13).

Exercise 42. Can you give other examples of natural “partitioning problems” that
can be solved using product forms such as (13)?

11

Exercise 43. Algebraize the task of counting connected spanning subgraphs of a
given graph with n vertices. Develop an algorithm with O∗(2n) running time. Hint:
A graph with e edges has exactly 2e spanning subgraphs, each of which partitions
into one or more connected components.

4.4. Maximum satisfiability (MAX-SAT). Let x1, x2, . . . , xn be variables tak-
ing values in {0, 1}. A literal is a variable xi or its negation x̄i. A positive literal
xi (respectively, a negative literal x̄i) is satisfied by an assignment of values to the
variables if xi = 1 (respectively, xi = 0). A clause of length k (a k-clause) is a set
of k literals. A clause is satisfied if at least one of its literals is satisfied.

The k-satisfiability problem (k-SAT) asks, given a collection of k-clauses as input,
whether there exists an assignment of values to the variables such that all input
clauses are satisfied. The maximum k-satisfiability problem (MAX-k-SAT) asks,
given a collection of k-clauses as input, for the maximum number of input clauses
that can be satisfied by an assignment of values to the variables.

4.5. Algebraizing MAX-SAT. Suppose a collection of m clauses over n variables
has been given as input. Let us view an assignment of values to the variables
x1, x2, . . . , xn as an n-tuple t = (t1, t2, . . . , tn) ∈ {0, 1}n, where ti is the value
assigned to xi for 1 ≤ i ≤ n.

For an assignment t ∈ {0, 1}n, denote by N(t) the number of input clauses
satisfied by t. Introduce the generating function

(14) G(w) =
∑

t∈{0,1}n

wN(t) .

Observe that G(w) is a polynomial of degree at most m with nonnegative integer
coefficients that sum to 2n. In particular, the degree of G(w) is the maximum
number of input clauses that can be satisfied by an assignment.

4.6. A time-space tradeoff via fast matrix multiplication. We now restrict
to the case k = 2 (MAX-2-SAT). Assume that 3 divides n (if not, insert new
variables). Partition the variables arbitrarily into three types A,B,C so that there
are exactly n/3 variables of each type. Partition the input clauses into types A,B,C
so that a clause of type T does not contain a variable of type T . Because k = 2,
such a partition of the input clauses always exists.

We can now split an assignment t ∈ {0, 1}n into three sub-assignments a, b, c ∈
{0, 1}n/3 for the variables of each type. The number of satisfied input clauses splits
accordingly into

(15) N(t) = NC(a, b) +NB(a, c) +NA(b, c)

where NC , NB , and NA count the number of satisfied input clauses of each respec-
tive type. In particular, NT is independent of the sub-assignment to variables of
type T .

We proceed to split G(w) using (15) and recover a matrix product. Let N 〈w〉C ,
N
〈w〉
B , N 〈w〉A be matrices of size 2n/3×2n/3 with entries defined for a, b, c ∈ {0, 1}n/3

by

N
〈w〉
C (a, b) def= wNC(a,b), N

〈w〉
B (a, c) def= wNB(a,c), N

〈w〉
A (b, c) def= wNA(b,c).

12 PETTERI KASKI

We now have

G(w) =
∑
a,b,c

wNC(a,b)+NB(a,c)+NA(b,c) (split to types)

=
∑
a,b,c

wNC(a,b)wNB(a,c)wNA(b,c) (expand)

=
∑
a,c

wNB(a,c)
∑
b

wNC(a,b)wNA(b,c) (collect)(16)

=
∑
a,c

N
〈w〉
B (a, c)

∑
b

N
〈w〉
C (a, b)N 〈w〉A (b, c) (in matrix form)

=
∑
a,c

N
〈w〉
B (a, c)

(
N
〈w〉
C N

〈w〉
A

)
(a, c). (to matrix product)

A trivial algorithm for MAX-2-SAT runs in O∗(2n) time and O∗(1) space. Using
(16), we can now trade space for time by first constructing the matrices N 〈w〉C , N 〈w〉B ,
N
〈w〉
A and then using fast matrix multiplication to determine the product N 〈w〉C N

〈w〉
A

in O((2n/3)ω+ε) ring operations for any fixed ε > 0, which leads to O∗(2(ω+ε)n/3)
time and O∗(22n/3) space for MAX-2-SAT.

Exercise 44. Observe that one can carry out the computations in (16) with evalu-
ations of the generating function G(w) at m+1 distinct points w = w0, w1, . . . , wm,
and then recover G(w) via interpolation.

5. Further exercises and remarks

5.1. Transforms on the subset lattice. The following exercises develop and
relate to each other some further transformations on the subset lattice.

Define the up-zeta transform fζ ′ : 2U → R by

fζ ′(T) def=
∑
T⊆S

f(S) for T ⊆ U .

Define the up-Moebius transform fµ′ : 2U → R by

fµ′(T) def=
∑
T⊆S

(−1)|S|+|T |f(S) for T ⊆ U .

Exercise 45. Observe that in matrix form we obtain ζ ′ from ζ by taking the trans-
pose. Similarly for µ′ and µ.

Define the complement transform fκ : 2U → R by

(fκ)(S) def= f(U \ S) for S ⊆ U.

Define the odd-negation transform fσ : 2U → R by

(fσ)(S) def= (−1)|S|f(S) for S ⊆ U.

Exercise 46. ζ ′ = κζκ, µ′ = κµκ, µ = σζσ, ζ = σµσ.

Exercise 47. ζ ′µ = ζκσ, ζµ′ = ζ ′σκ, µ′ζ = µσκ, µζ ′ = µ′κσ.

Exercise 48. Present a natural definition for δ def= ζκ. Show that δ = ζ ′σζ.

13

Exercise 49. Define the intersection product f ∩ g : 2U → R by (f ∩ g)(S) def=∑
A∩B=S f(A)g(B) for S ⊆ U . Show that (f ∩ g)κ = (fκ)∪ (fκ). Take the up-zeta

transform of f ∩ g and simplify to a pointwise product. Establish (f ∩ g) ∩ h =
f ∩ (g ∩ h).

Exercise 50. Define the difference product f \ g : 2U → R by (f \ g)(S) def=∑
A\B=S f(A)g(B) for S ⊆ U . Show that f \ g = f ∩ (gκ).

Exercise 51. Define the Walsh–Hadamard transform (the Fourier transform on
the n-cube) fφ : 2U → R by (fφ)(S) def=

∑
T (−1)|S∩T |f(T) for S ⊆ U . Show that

fφ2 = 2nf . Is φ invertible if R is an arbitrary ring?

Exercise 52. For A,B ⊆ U , define the symmetric difference A⊕ B def= (A \ B) ∪
(B \A). Define the symmetric difference product f ⊕ g : 2U → R by (f ⊕ g)(S) def=∑
A⊕B=S f(A)g(B) for S ⊆ U . Show that (f ⊕ g)φ = (fφ) · (gφ). Establish

(f ⊕ g)⊕ h = f ⊕ (g ⊕ h).

Exercise 53. Reduce the disjoint union product to the symmetric difference prod-
uct.

Exercise 54. Let f : 2U → R and k : 2U → R. Define the k-intersection transform
fτ∩k : 2U → R by (fτ∩k)(S) =

∑
T k(S ∩ T)f(T) for S ⊆ U . Show that fτ∩k =

((kµ) · (fζ ′))ζ.

Exercise 55. Observe that φ reduces to τ∩k for a specific k. Simplify the pointwise
product form of the k-intersection product when k is 1 on sets of size j, and 0
elsewhere.

Exercise 56. Define similar k-union, k-difference, and k-symmetric difference
transforms. Reduce each to a pointwise product form.

Exercise 57. Are all the transforms in this section computable in O∗(2n) ring
operations given space for O∗(2n) ring elements?

5.2. Trimming. This section investigates “trimming” of transforms on 2U when
the input and output are restricted to subsets of 2U .

Our first objective is a “closure trimming lemma” for fast Moebius inversion.
Let F ⊆ 2U . Denote by ↑F the up-closure of F, that is, the set consisting of

the sets in F and all their supersets in 2U . Denote by ↓F the down-closure of F,
that is, the set consisting of the sets in F and all their subsets in 2U . Define the
elementwise complement of F by U\F def= {U\S : S ∈ F}.

Exercise 58. U\↑F = ↓U\F, U\↓F = ↑U\F.

Lemma 59. There exist algorithms that, given E ⊆ 2U and F ⊆ 2U as input,
construct an R-arithmetic circuit with input gates for f : F → R and output gates
that evaluate to any of fζ : E → R, fζ ′ : E → R, fµ : E → R, or fµ′ : E → R,
with construction time any of O∗(|↑E|+ |↑F|), O∗(|↑E|+ |↓F|), O∗(|↓E|+ |↑F|), or
O∗(|↓E|+ |↓F|).

Proof. Because µ = σζσ and µ′ = σζ ′σ, it suffices to consider ζ and ζ ′ only.
Because ζ ′ = κζκ, it suffices to consider ζ only. To evaluate fζ : E→ R it suffices
to consider f : ↓E→ R because f outside ↓E does not affect fζ in E.

14 PETTERI KASKI

Time O∗(|↓E| + |F|). Consider Yates’s algorithm with k(0, 0) = 1, k(0, 1) = 0,
k(1, 0) = 1, and k(1, 1) = 1, that is, the output is the zeta transform of the input.
In this case any walk in the n-cube that has a 1 7→ 0 step has weight 0 because
k(0, 1) = 0. Thus, such walks may be discarded. Furthermore, all walks to vertices
in E that do not have a 1 7→ 0 step traverse only vertices in ↓E. Thus, Yates’s
algorithm in fact specifies an R-arithmetic circuit of size O(n|↓E|) with inputs and
outputs indexed by ↓E. The construction is completed by connecting the inputs in
F with corresponding input gates in the zeta circuit; any inputs to the zeta circuit
not in F are forced to 0.

Time O∗(|E| + |↑F|). Observe that fζ vanishes outside ↑F. Furthermore, all
walks to ↑F from F stay within ↑F. Restrict Yates to ↑F and output 0 outside ↑F.

Time O∗(|↑E| + |↓F|). Observe that ζ = ζ ′σζκ. Let us develop the right-hand
side into a sequential circuit by “meeting in the middle.”

F ζ ′ σ ζ κ E

Starting from the left, given the inputs at F, we have that the output of ζ ′ vanishes
outside ↓F. Starting from the right, the outputs at E require input at U\E for
κ. Thus, we require input for ζ at ↓U\E to evaluate the outputs at U\E. The
odd-negation layer σ thus requires input and output at ↓U\E. We now connect
the outputs of the left part with the corresponding inputs of the right part at
(↓F)∩ (↓U\E), and force any remaining inputs of the right part to 0. Observe that
↓U\E = U\↑E and that |U\↑E| = |↑E|. �

Exercise 60. Open problem: Can one evaluate fζ : E→ R for given E,F ⊆ 2U and
f : F → R using an R-arithmetic circuit of size O∗(|↑E|+ |F|) or O∗(|E|+ |↓F|)?

Let us sketch an application of Lemma 59 in counting long paths in graphs.
Recalling Exercise 49, consider the intersection product f ∩ g : E → R for given
f : F → R and g : G→ R. We have

f ∩ g = ((fζ ′) · (gζ ′))µ′.
Observe that (fζ ′) · (gζ ′) vanishes outside (↓F) ∩ (↓G). Thus, Lemma 59 implies
that we can evaluate f ∩ g in O∗(|↓E|+ |↓F|+ |↓G|) ring operations, given space for
O∗(|↓E|+ |↓F|+ |↓G|) ring elements. In particular, letting E = {∅}, we can evaluate
the sum

(17) (f ∩ g)(∅) =
∑

A∈F,B∈G
A∩B=∅

f(A)g(B)

in O∗(|↓F|+ |↓G|) ring operations, given space for O∗(|↓F|+ |↓G|) ring elements.
Now consider an undirected graph G with vertex set V , |V | = n. Suppose we

want to compute the number of (s, t)-paths of length k for given G, 1 ≤ k ≤ n− 1,
and distinct s, t ∈ V . (The length of a path is the number of edges in it.) For
simplicity, we assume that k is even.

Observe that every (s, t)-path of even length k has a unique midpoint v ∈ V \
{s, t} that splits the path into two halves of equal length; that is, into an (s, v)-path
and a (v, t)-path, both of length k/2.

We proceed to “count in halves” via (17). Let v ∈ V \ {s, t} and U = V \ {v}.
Let fv(A) be the number of (s, v)-paths in G with vertex set A∪{v}, and let gv(B)
be the number of (v, t)-paths in G with vertex set B ∪ {v}.

15

Exercise 61. Design a dynamic programming algorithm that computes fv :
(
U
k/2

)
→

Z and gv :
(
U
k/2

)
→ Z in time O∗(

(
n
k/2

)
).

It now follows from (17) that we can count in time and space O∗(
(
n
k/2

)
) the

number of (s, t)-paths of length k in G, that is,∑
v∈V \{s,t}

∑
A,B∈(V \{v}

k/2)
A∩B=∅

fv(A)gv(B).

5.3. Bibliography. Donald Knuth’s The Art of Computer Programming (Vol-
ume 2: Seminumerical Algorithms, 3rd ed., Addison–Wesley, 1998) gives a com-
prehensive introduction to arithmetic algorithms. More specialized texts include
Computational Complexity of Algebraic and Numeric Problems by A. Borodin and
I. Munro (Elsevier, 1975), Polynomial and Matrix Computations by D. Bini and
V. Y. Pan (Volume 1: Fundamental algorithms, Birkhäuser, 1994), and Alge-
braic Complexity Theory by P. Bürgisser, M. Clausen, and M. Amin Shokrollahi
(Springer, 1997).

Strassen’s algorithm appears in [V. Strassen, Numer. Math. 13 (1969) 354–356].
Yates’s algorithm is due to F. Yates [The Design and Analysis of Factorial Exper-
iments, Imperial Bureau of Soil Sciences, Harpenden 1937]. Currently the asymp-
totically fastest algorithm for matrix multiplication is due to D. Coppersmith and
S. Winograd [J. Symbolic Comp. 9 (1990) 251–280].

An introductory text covering basic combinatorial techniques such as Moebius
inversion is A Course in Combinatorics by J. H. van Lint and R. M. Wilson (Cam-
bridge University Press, 1992).

The union product (in a dual form) together with fast Moebius inversion was
introduced in [R. Kennes, IEEE Transactions on Systems, Man, and Cybernetics
22 (1991) 201–223]. The disjoint union product was introduced in A. Björklund,
T. Husfeldt, P. Kaski, and M. Koivisto [Proc. 39th ACM Symposium on Theory of
Computing, 2007, 67–74].

A. Björklund, T. Husfeldt, and M. Koivisto [SIAM J. Comput., to appear; see
also Proc. 47th IEEE Symposium on Foundations of Computer Science, 2006, 575–
582 and 583–590] discovered that graph coloring and other partitioning problems
can be solved in time O∗(2n) using inclusion–exclusion. Algebraization of MAX-
2-CSP via matrix multiplication is due to R. Williams [Theoret. Comput.Sci. 348
(2005) 357–365] and M. Koivisto [Inform. Proc. Lett. 98 (2006) 22–24].

The closure trimming lemma (Lemma 59) is an unpublished extension of results
in A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto [Proc. 25th Annual Sympo-
sium on Theoretical Aspects of Computer Science, 2008, 85–96]. The k-intersection
transform in Exercise 54 is an unpublished slightly stronger version of results in
A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto [arXiv:0809.2489]. The ap-
plication to counting paths in graphs is from A. Björklund, T. Husfeldt, P. Kaski,
and M. Koivisto [arXiv:0904.3093]; see [arXiv:0904.3251] for an application to eval-
uation of permanents.

Helsinki Institute for Information Technology HIIT, University of Helsinki, De-

partment of Computer Science, P.O. Box 68, 00014 University of Helsinki, Finland

E-mail address: petteri.kaski@cs.helsinki.fi

